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Received 3 May 1984 

Abstract. Oscillator-like coherent states are introduced on the O(4) algebra of the H-atom 
dynamical symmetry group when given in terms of boson operators. It is shown that the 
correct classical frequencies may be obtained without the correspondence limit. 

There have, over the years, been many discussions in the literature on the classical 
limit of the quantum Kepler problem-the hydrogen atom. These discussions consist 
of two different types of approaches to quasi-classical behaviour. There is of course 
the WKB approximation obtained in the limit that h + O  (see Berry and Mount (1972) 
for a review). Then there are attempts to find wavepackets consisting of the right 
combinations of Coulomb wavefunctions to be concentrated on circular (Brown 1973) 
or elliptical orbits (Snieder 1983) of the corresponding classical Kepler problem. This 
second approach seems to be realised for high quantum numbers n and might therefore 
be said to be a reflection of the Bohr correspondence principle. 

On the other hand Schrodinger (1926) discovered a set of gaussian states for the 
harmonic oscillator which do not spread in time and follow the classical motion of 
the oscillator. These states are now called coherent states. Schrodinger went on to 
speculate that a similar set of states for the H-atom could be constructed. That this 
was not realised is due to the fact that for the oscillator the energy eigenvalues are 
integer space while they are not for the H-atom (Nieto and Simmons 1979). 

In this letter we give a preliminary account of an attempt to obtain a quasi-classical 
picture of the H-atom by introducing oscillator-like coherent states when the algebra 
of the dynamical symmetry group O(4) is realised in terms of boson operators. Here 
we shall limit our discussion to determination of the classical Kepler orbital frequencies 
while elsewhere we shall give a more detailed account including an attempt to obtain 
the classical elliptical orbits as well. 

First we consider the harmonic oscillator of frequency w where the Hamiltonian is 

H o = h w ( a t a  +f )  ( 1 )  
and where [a, at] = 1. The eigenstates of (1) are of course the usual In)  where ataln) = 
nln). Coherent states 12) where z is a complex number may be introduced as linear 
combinations of the states In) as either minimum uncertainty states, eigenstates of the 
operator a, or as states displaced from the ground state In = 0) via the operator 
D ( z )  = exp(rat - z*a)  (Glauber 1963). All definitions yield the same result namely 
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Properties of these states are given in many places e.g. Klauder and Sudarshan (1968). 
From the Hamiltonian ( 1 )  we obtain the classical counterpart as 

H~'=(zlHolz)  

= ho(z*z +f). (3) 

The variable z will satisfy the Hamiltonian equations 

ihz = aH;I/az* 

-ihz* = aHE'/az. 

However, we may define the action variables J = h(lz12 +$) so that Hz' = vJ and Y = - 
aH$/aJ as required for a periodic system (Goldstein 1980). In this case of course, 
the frequency is independent of the energy. The quantised energy levels are recovered 
via the Bohr-Sommerfeld rule J = h ( n  +f). 

Now consider the H-atom (for a review of the O(4) formulation see Wulfman 
197 1 ). The Hamiltonian 

H =p2/2p - Z e 2 / r  ( 5 )  

commutes with the angular momentum vector L and the Runge-Lenz vector 

A s h  well known A' is orthogonal to L 
A ' * L = L . A ' = O  

and has the norm 

A" = ( 2 / p )  H( L2 +h') + (Ze')' 

(7) 

where H is from equation ( 5 ) .  If we define A = ( - P / ~ E ) " ~ A '  for E<O then the 
decomposition O(4) - su(2)a@su(2)b emerges if we define the operators 

sa = f ( ~  + A ) ,  Sb = f ( L -  A )  (9) 

where Sa and sb separately close on an SU(2) Lie algebra. The operators Sa and sb 
may be realised in terms of four boson operators as 

S = f b t a b  (10% 6 )  I t  Sa = ia aa, 

where 

a=(::), b=(;:> 

and a = ( ul, u2, uj) are the Pauli matrices. 

equations (7) and (8) become 
Now Kibler and Negadi (1983) have shown that in terms of these operators 

(ala, +a:a2 + 1 ) 2  = ( b i b ,  + b:b2 + 1)' 

-pZ2e4/h2E = (a:a,  + ~ : a ~ + l ) ~ + ( b : b ,  +b:b2+1)2 

(12) 

(13) 

and 
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respectively. Introducing the Fock space eigenstatest of a!ai as In,) and those of bib, 
as Imi) where ni, mi = 0, 1,2, . . . , one obtains from equation (12) the constraint condition 

n ,  + n 2 =  m, +m2 (14) 

and from (13) (using equation (14)) the energy levels 

E,, = - pZ2e4/2n2 

where n = n,  + n2 + 1 = m, + mz + 1. 

operators. That is let 
We now introduce a set of ordinary coherent states for each of the sets of boson 

129) = D(zp)lni = O), (zP)= D(zp)(m,=o) (16a, b) 

where i = 1,2, are the set of four coherent states associated with a and b. Then equation 
(7) gives the condition 

Jzp12 +IZz”12 = IZpI’ +1z;l2 (17) 

and one has the energy 

where k = Zez. As in the case of the harmonic oscillator we may introduce the action 
variables 

J?b = h ( 1 ~ 4 , ~ ( ~ + & )  (19) 

so that 

Hcl= -27r2pkZ/(J: +.l;)’ 

= - 2 d p k 2 /  (Jp + J!)’. (20b) 

From Hamilton’s equation in action-angle variables one has 

U,, = aHc,/aJpb = aH/aJgb 

=4.rr2pkZ/(Jf + J;)’ (21) 

r = 2 . ~ a ~ / ~ ( p /  k)“’ (22) 

which yields the correct relation for the period of Kepler orbits namely 

where a = - k/2E. Quantisation may be regained by the application to the action 
variables of the Bohr-Sommerfeld rule stated earlier. 

Finally we remark that our result in equation (21) is nor dependent on taking n to 
be large but rather the coherent states are composed of a sum over all quantum numbers. 
Elsewhere we shall make use of the fact that the four-dimensional oscillators (i.e. the 
four operators of a and b) and the three-dimensional Kepler problems are related by 
the Kustaanheimo-Stiefel ( 1965) transformation first introduced in the context of 
celestial mechanics (see Barut er a1 (1979) for its quantum application). From this 
one may show that these coherent states do describe the expected elliptical orbits. 

t These states are actually just relabelled SU(2) states of the Schwinger boson representation (Schwinger 
1965). 
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